Related publications

  • Auerbach, D. Aydin, A. Maesani, P. Kornatowski, T. Cieslewski, G. Heitz, P. Fer- nando, I. Loshchilov, L. Daler, and D. Floreano. RoboGen: Robot generation through artificial evolution, Proceedings of the 14th Conference on the Synthesis and Simulation of Living Systems, MIT Press, 2014, pp. 136–137.
  • J. Auerbach and J. Bongard. Environmental influence on the evolution of morphological complexity in machines. PLOS Computational Biology, 10(1):e1003399, 2014.
  • J. Bongard, Morphological change in machines accelerates the evolution of robust behavior. Proc Natl Acad Sci 108(4):1234–1239, 2011.
  • J. C. Bongard. Evolutionary robotics. Communications of the ACM, 56(8):74–83, 2013.
  • N. Bredeche, J.M. Montanier, W. Liu, and A.F.T. Winfield, Environment-driven distributed evolutionary adaptation in a population of autonomous robotic agents, Math. Comput. Model. Dyn. Syst. 18, 101–129, 2012.
  • L. Brodbeck, S. Hauser, and F. Iida. Morphological evolution of physical robots through model-free phenotype development. PLoS One, 10(6):e0128444, 2015.
  • N. Cheney, R. MacCurdy, J. Clune, and H. Lipson. Unshackling evolution: Evolving soft robots with multiple materials and a powerful generative encoding. Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, ACM Press, 2013, pp. 167–174.
  • A. Cho. The accidental roboticist. Science, 346(6206):192–194, October 2014.
  • J. Clune and H. Lipson, Evolving three-dimensional objects with a generative encoding inspired by developmental biology, Proceedings of the European Conference on Artificial Life, MIT Press, 2011, pp. 141–148.
  • A. Cully, J. Clune, D. Tarapore and J.B. Mouret, Robots that can adapt like animals, Nature, 521:503-507, doi:10.1038/nature14422, 2015.
  • S. Doncieux and N. Bredeche and J.-B. Mouret and A.E. Eiben, Evolutionary robotics: what, why, and where toFrontiers in Robotics and AI, 2(4), doi:10.3389/frobt.2015.00004, 2015
  • A. E. Eiben, Grand challenges for evolutionary roboticsFrontiers in Robotics and AI , 1(4), doi:10.3389/frobt.2014.00004, 2014
  • A.E. Eiben, In Vivo Veritas: Towards the Evolution of Things, B. Filipic, T. Bartz-Beielstein, J. Branke, and J. Smith (Eds.), Proceedings of the 13th International Conference on Parallel Problem Solving from Nature (PPSN 2014), Springer, 2014, pp. 24-39
  • A.E. Eiben, EvoSphere: the World of Robot Evolution, A.-H. Dediu et al. (Eds.),Proceedings of the Theory and Practice of Natural Computing 2015 (TPNC 2015), LNCS 9477, Springer, 2015, pp. 1-17.
  • A.E. Eiben, N. Bredeche, M. Hoogendoorn, J. Stradner, J. Timmis, A.M. Tyrrell and A. Winfield, The Triangle of Life: Evolving Robots in Real-time and Real-space, Lio P., Miglino O, Nicosia G, Nolfi S, and Pavone M. (Eds.), Proceedings of the 12th European Conference on the Synthesis and Simulation of Living Systems (ECAL 2013), MIT Press, 2013, pp. 1056-1063.
  • A.E. Eiben, S. Kernbach, and Evert Haasdijk, Embodied artificial evolution: Artificial evolutionary systems in the 21st CenturyEvolutionary Intelligence, 5(4):261-272, 2012.
  • A.E. Eiben and J. Smith, From evolutionary computation to the evolution of thingsNature, 521:476-482, doi:10.1038/nature14544, 2015.
  • A.E. Eiben and J. Smith, Towards the evolution of thingsSIGEVOlution, Newsletter of the ACM Special Interest Group on Genetic and Evolutionary Computation, 8(3):3-6, 2016.
  • D. Floreano, P. Husbands, and S. Nolfi. Evolutionary robotics. In Springer handbook of robotics, pages 1423–1451. Springer, 2008.
  • K. Glette, G. Klaus, J. C. Zagal, and J. Torresen. Evolution of locomotion in a sim- ulated quadruped robot and transferral to reality. In Proceedings of the Seventeenth International Symposium on Artificial Life and Robotics, pages 1–4, 2012.
  • H. Hauser, R. Füchslin, R. Pfeifer. (eds.), Opinions and Outlooks on Morphological Computation, 2014.
  • T. Hemker, H. Sakamoto, M. Stelzer, and O. von Stryk. Hardware-in-the-loop opti- mization of the walking speed of a humanoid robot. In CLAWAR 2006, pages 614–623, 2006
  • J. Hiller and H. Lipson. Automatic design and manufacture of soft robots. Robotics, IEEE Transactions on, 28(2):457–466, 2012.
  • M. Hoffmann and V.C. Müller, Trade-Offs in Exploiting Body Morphology for Control, in [HFP14], 185-194, 2014.
  • F. Iida, R. Pfeifer, L. Steels, and Y. Kuniyoshi, editors. Embodied Artificial Intelligence. Number 3139 in LNAI. Springer, 2004.
  • N. Jakobi, P. Husbands, and I. Harvey. Noise and the reality gap: The use of simulation in evolutionary robotics. In F. Moran, A. Moreno, J. Merelo, and P. Chacon, editors, Advances in Artificial Life, number 929 in LNAI, pages 704–720. Springer, 1995.
  • S. Koos, J.-B. Mouret, and S. Doncieux. The transferability approach: Crossing the reality gap in evolutionary robotics. IEEE Transactions on Evolutionary Computation, 17(1):122–145, 2013.
  • T. Kuehn and J. Rieffel. Automatically designing and printing 3-d objects with evofab 0.2. Artificial Life, 13:372–378, 2012.
  • H. Lipson and J. B. Pollack. Automatic design and manufacture of robotic lifeforms. Nature, 406:974–978, 2000.
  • J. Long. Darwin’s Devices: What Evolving Robots Can Teach Us About the History of Life and the Future of Technology. Basic Books, 2012.
  • T. Miconi, Evosphere: evolutionary dynamics in a population of fighting virtual creatures, Proceedings of the IEEE Congress on Evolutionary Computation, IEEE Press, 2008, pp. 3066-3073.
  • S. Nolfi and D. Floreano. Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines. MIT press, 2000.
  • R. Pfeifer and J. Bongard. How the Body Shapes the Way We Think. MIT Press, 2006.
  • R. Pfeifer and F. Iida. Embodied artificial intelligence: Trends and challenges. In F. Iida, R. Pfeifer, L. Steels, and Y. Kuniyoshi, editors, Embodied Artificial Intelligence, number 3139 in LNAI, pages 1–26. Springer, 2004.
  • J. Rieffel and D. Sayles. Evofab: a fully embodied evolutionary fabricator. In Proceedings of of ICES’10, pages 372–380. Springer, 2010.
  • K. Sims, Evolving 3D Morphology and Behavior by Competition, Proceedings of Artificial Life IV, MIT Press, 1994, pp. 28-39.
  • V. Trianni. Evolutionary swarm robotics: evolving self-organising behaviours in groups of autonomous robots, volume 108. Springer, 2008.
  • P.A. Vargas, E. A. Di Paolo, I. Harvey, and P. Husbands. The horizons of evolutionary robotics. MIT Press, 2014.
  • L. Wang, K. C. Tan, and C. M. Chew. Evolutionary robotics: from algorithms to implementations. World Scientific, 2006.
  • B. Weel, E. Crosato, J. Heinerman, E. Haasdijk, and A.E. Eiben, A Robotic Ecosystem with Evolvable Minds and Bodies, A.M. Tyrrell (Ed.), Proceedings of the 2014 IEEE International Conference on Evolvable Systems (ICES 2014), IEEE Press, 2014, pp. 165-172.
  • A.F.. Winfield and J. Timmis, Evolvable Robot Hardware, in Evolvable Hardware: From Practice to Application, Nat Comp Series, Springer, 2015, 331-348
  • V. Zykov, E. Mytilinaios, B. Adams, and H. Lipson. Self-reproducing machines. Nature, 435(7039):163–164, 2005.
  • V. Zykov, E. Mytilinaios, M. Desnoyer, and H. Lipson. Evolved and designed self- reproducing modular robotics. Robotics, IEEE Transactions on, 23(2):308–319, 2007

Topics addressed here include: artificial intelligence, evolutionary computing, evolutionary robotics, evolution of intelligence, evolution of morphology, Evolution of Things, EvoSphere, robot baby project, the Triangle of Life.

This website has been set up by Artificial Intelligence researchers of the Vrije Universiteit Amsterdam. It is to provide information about ongoing work concerning the evolution of intelligence in robot populations.

Contact us

3 + 7 =