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Evolutionary Computing has received major exposure this year. Nature, the top dog of scientific 
journals, devoted a full-length review article to this field [1]. Evolutionary algorithms have been 
around for about three decades, without obtaining such high profile coverage, so what changed?   
 
In our view the new interest is based on a possible new role for artificial evolutionary systems. 
Traditionally, artificial evolution equated to evolutionary problem solving, that is, using 
evolutionary algorithms as heuristic methods for solving optimization, design, and modelling tasks 
[2]. We strongly believe that such systems will always be important, and that research in this area 
will continue to flourish. However, increased interest has been sparked not just by high-profile 
success stories, but also by interesting developments in other directions. First of all, there is a 
wider interest in, and debate around AI-in-general, prompted by fears and by some well publicised 
advances in areas such as deep learning [3]. Perhaps more critically for our field, developments 
over the last couple of years boosted a latent opportunity of employing artificial evolution far 
beyond using it as an optimizer. The punchiest way to explain this potential is through the following 
four statements. 

• Evolution can produce intelligence.
• Artificial evolution can produce artificial intelligence.
• The physical form of an agent plays a significant role in its “intelligence”.
• New fabrication technologies are transforming how we can create objects.  
 
The first statement is proven by our own intelligence that is a result of evolution on Earth. The 
second one, then, is a reasonable expectation, a plausible working hypothesis if you wish - and has 
been around for more than fifty years.  

Towards the Evolution of Things

Figure 1. 1998: 2D and 3D LOGO objects 
evolved in simulation and built in real 
world afterwards [6]. These constructions 
are not actuated and have no controllers.

Figure 2. 2000: The GOLEM project [7] 
co-evolved robot bodies and controllers in 
simulation and fabricated the evolved robot 
afterwards. The robots did not have sensors.
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The third statement reflects much more recent thinking [4], but raises the question of how we 
design both bodies and controllers.  Designing these separately is a complex task, that becomes 
even more so when coupled. In the fourth lies part of the answer: if we can now rapidly and 
automatically fabricate new parts, and assemble things, then we can apply evolutionary algorithms 
to both design tasks, and so achieve new levels of artificial intelligence.  
 
The quest for artificial intelligence started with a narrow focus on the Mind. The bold dream in 
the 20th century was to create thinking machines. This was reflected by the Grand Challenge of 
creating a computer program that can beat the world champion of chess. As we all know, this was 
successfully accomplished before the end of the century. Acknowledging that intelligence is a 
characteristic of behaviour which arises from the interactions of mind, body and environment the 
focus on thinking machines is widening and the bold dream of the 21st century is to create acting 
machines, commonly known as robots. Judging by the furore generated by an advert purporting 
to show a robot competing with a world-class  table-tennis player [4] , the corresponding Grand 
Challenge of embodied intelligence to create a robot that can play against a human at sport.  
Beyond that we have the greater challenges of coordinated action: a team of robots that can beat 
the world champions of football.  
 
This brings us back to the working hypothesis above that identifies evolution as a potential 
approach to achieving intelligent behavior in entities with a mind and a body, i.e., in robots. The 
field of evolutionary robotics [11, 12], aims to evolve the controllers, the morphologies, or both, for 
real and simulated autonomous robots [13]. Considering the complexity of interactions between 
environment, morphology and controller, evolution may be not just one approach, but the approach 
to designing intelligent robots for a range of circumstances. 
 
However, forced by technical constraints the usual modus operandi in evolutionary robotics is 
quite limited: evolve robot controllers in simulation and transfer the outcome to real hardware 
afterwards. Thus, even though the final goal is to obtain physical robots with evolved intelligence, 
the evolutionary process is still digital, which leads to the notorious reality gap problem [14]. 
 
The exciting new opportunity is to have physically embedded evolutionary processes on real 
--not simulated-- robots. Figures 1-6 demonstrate progress that has been made to date with self-
assembly and the creation of physical artefacts -  and the work still to be done. One option is to 
evolve controllers on-the-fly in a population of real robots (with fixed morphologies). This has been 
demonstrated in a handful of studies, for instance [15]. Another one is to evolve robot morphologies 
in real hardware by manually constructing each individual of the next generation. The only example 
we know of is the work of John Long described in [16,17]. The ultimate goal is of course a system

Figure 4. 2014: Robots with Arduino controllers, 
fixed parts and 3D-printed components that can be 
evolved in simulation and built afterwards.[9]

Figure 3. 2005: A physical system based 
on Molecubes, demonstrated non-adaptive 
robots able to construct a replica of 
themselves [8]. 
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where robots can reproduce themselves and evolve in real space and real time. To date this may 
seem far fetched, but advances in 3D printing and automated assembly are quickly bringing a 
robotic EvoSphere within reach [18]. Moreover, increases in the computing power we can put 
on-board robots, and in our understanding of surrogate modelling, and of how to avoid the reality 
gap [19] might make it feasible for each robot to add evolution to the life-time learning as a way of 
improving its controller -  so it may not be necessary for evolution of morphologies and controllers 
to proceed in lock-step. The Evolution of Things may be closer than it seems.

Figure 6. 2016: Robots are constructed in real 
hardware, undergo online learning, and can meet 
and mate in real life [18]. Offspring specified by the 
recombined genome is hand constructed from fixed 
components and 3D-printed blocks. Design is based 
on RoboGen [9].

Figure 5. 2015:  Quasi hands-free 
construction of genetically 
encoded modular robot bodies 
[10]. Consecutive generations were 
constructed and evaluated in real 
hardware The robots had no sensors 
and were driven by an external PC 
rather than an onboard controller.
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